29 research outputs found

    Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition/Electrochemical Vapor Deposition

    Get PDF
    Chemical vapor deposition (CVD) and electrochemical vapor deposition (EVD) have been applied to deposit yttria-stabilized-zirconia (YSZ) on porous ceramic media. The experimental results indicate that the location of YSZ deposition can be varied from the surface of the substrates to the inside of the substrates by changing the CVD/EVD experimental conditions, i.e., the concentration ratio of the reactant vapors. The deposition width is strongly dependent on the deposition temperature used. The deposition of YSZ inside the pores resulted in pore narrowing and eventually pore closure, which was measured by using permpor-ometry. However, deposition of YSZ on top of porous ceramic substrates (outside the pores) did not result in a reduction of the average pore size. Ultrathin, dense YSZ layers on porous ceramic substrates can be obtained by suppressing the EVD layer growth process after pore closure

    DNA methylation immediately adjacent to active histone marking does not silence transcription

    Get PDF
    Active promoters generally contain histone H3/H4 hyperacetylation and tri-methylation at H3 lysine 4, whereas repressed promoters are associated with DNA methylation. Here we show that the repressed erythroid-specific carbonic anhydrase II (CAII) promoter has active histone modifications localized around the transcription start, while high levels of CpG methylation are present directly upstream from these active marks. Despite the presence of active histone modifications, the repressed promoter requires hormone-induced activation for efficient preinitiation complex assembly. Transient and positional changes in histone H3/H4 acetylation and local changes in nucleosome density are evident during activation, but the bipartite epigenetic code is stably maintained. Our results suggest that active histone modifications may prevent spreading of CpG methylation towards the promoter and show that repressive DNA methylation immediately adjacent to a promoter does not necessarily repress transcription

    Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Get PDF
    DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns

    A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers

    Get PDF
    Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. The transcriptomic consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.DG is supported by the EU-FP7-SUPPRESSTEM project. SN-Z is funded by a Wellcome Trust Intermediate Fellowship (WT100183MA) and is a Wellcome Beit Fellow. For more information, please visit the publisher's website

    Designing the selenium and bladder cancer trial (SELEBLAT), a phase lll randomized chemoprevention study with selenium on recurrence of bladder cancer in Belgium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Belgium, bladder cancer is the fifth most common cancer in males (5.2%) and the sixth most frequent cause of death from cancer in males (3.8%). Previous epidemiological studies have consistently reported that selenium concentrations were inversely associated with the risk of bladder cancer. This suggests that selenium may also be suitable for chemoprevention of recurrence.</p> <p>Method</p> <p>The SELEBLAT study opened in September 2009 and is still recruiting all patients with non-invasive transitional cell carcinoma of the bladder on TURB operation in 15 Belgian hospitals. Recruitment progress can be monitored live at <url>http://www.seleblat.org.</url> Patients are randomly assigned to selenium yeast (200 ÎŒg/day) supplementation for 3 years or matching placebo, in addition to standard care. The objective is to determine the effect of selenium on the recurrence of bladder cancer. Randomization is stratified by treatment centre. A computerized algorithm randomly assigns the patients to a treatment arm. All study personnel and participants are blinded to treatment assignment for the duration of the study.</p> <p>Design</p> <p>The SELEnium and BLAdder cancer Trial (SELEBLAT) is a phase III randomized, placebo-controlled, academic, double-blind superior trial.</p> <p>Discussion</p> <p>This is the first report on a selenium randomized trial in bladder cancer patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00729287">NCT00729287</a></p

    Landscape of somatic mutations in 560 breast cancer whole-genome sequences.

    Get PDF
    We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer

    Ceramic Membranes by Electrochemical Vapor Deposition of Zirconia-Yttria-Terbia Layers on Porous Substrates

    Get PDF
    By means of electrochemical vapor deposition (EVD), it is possible to grow thin, dense layers of zirconia/yttria/terbiasolid solution (ZYT) on porous ceramic substrates. These layers can be used as ceramic membranes for oxygen separation.The kinetics of the EVD process, the morphology of the grown layers and their oxygen permeation properties are investigated.At a deposition temperature of 800°C, the EVD layer growth is limited by bulk electrochemical transport. At 1000°Cthe layer growth is limited by pore diffusion of the oxygen source reactant. The EVD-grown ZYT layers show columnarstructures with prismatic grains on top; the size of the grains (1 to 2 ”m) increases slightly with temperature and depositiontime. ZYT is deposited mainly in the cubic doped zirconia phase. Oxygen permeation experiments show that the oxygenpermeation flux through the ZYT layers is limited by an electrochemical process. Permeation values in the order of10–8 mol/cm2 s have been observed (900–1000°C, air vs. CO/CO2)
    corecore